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ABSTRACT
This paper tackles the theoretical questions connected to the 
calculation of various redundant forms in the information sector. 
In particular it is suggested a logical framework which reunifies 
the discussion of the active and the passive redundancies. We 
relate the present method to Shannon's entropy. 

Categories and Subject Descriptors
H.1.1 Systems and Information Theory (E.4) Data Structures 
and Data Storage Representations.

General Terms
Measurement, Design, Reliability, Standardization, Theory.

Keywords
Coding theory, passive redundancy, active redundancy, entropy.

1.  INTRODUCTION
From Shannon’s perspective, redundancy is the presence 
of more symbols in a message than is necessary.  This 
interpretation leads to the following definition of 
redundancy [1] 

max
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actH HR
H
−

=

Where actual entropy quantifies the source in use, and 
maximum entropy is when all the symbols of the source 
have equal probability. 
It is necessary to underline how Shannon develops his 
theory with a very specific model in mind. He postulates
an ensemble of messages to be transmitted whose 
statistics were fully known and unchanging. These are to 
be passed down a channel whose properties are accurately 

known. Also he assumes that the messages can be 
subdivided into blocks as required.
This model turns out to be insufficient to study 
redundancy in many modern sophisticate systems e.g. 
multimodal systems [2], neural networks [3], linguistics
[4], etc. To exemplify linguists analyze the stylistic 
redundancy which relies on subjective feeling and the 
grammatical redundancy due to the objective rules of 
each language. In conclusion redundancy can take so 
many different shapes that having a single model and 
criterion for measure it may be a little misleading.
In particular Shannon’s theory does not clarify how a sole 
code can exploit dissimilar forms of redundancy. We 
illustrate this problem emerging in the digital technologies 
through the following case.
Take the set of decimal numbers from 0000 up to 9999. 
We assume the code A includes the first hundred 
codewords while the remaining words are unused

A = {0000 ÷ 0099} used
B  = {0100 ÷ 9999}    unused

If the receiver gets an unused codeword, he detects an 
error, and this check brings evidence how A is redundant. 
Now we consider again the numbers from 0000 to 9999 
but define a different four-figure code. Let C codeword 
has two decimal figures followed by the check-sum of the 
first pair. The ensuing table sums up the used codewords 
of C when the remnants make the set D

C = {0000, 0101, 0202,...9918}                              used
D = {0001,0002...0100,0102,...9999}            unused

The code C exhibits a redundancy similar to the 
redundancy of A due to 9900 unused codewords. In 
addition we find that each codeword of C is redundant 
due to the checksum digits. The receiver may use two 
algorithms to discover a corrupted word. He finds an 
error:

1. When the received codeword belongs to D.
2. When the first digits of the received codeword 

mismatch with the checksum digits.

This couple of algorithms brings evidence that C includes 
two forms of redundancy.
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Now we calculate the redundancy of A. As A uses the 
decimal base, the maximum entropy is 

Hmax(A) = - log 1/10 = 2.302 bits/figure

To obtain the actual entropy we follow the approximate 
method suggested by Shannon. We calculate the entropy 
of one hundred codewords of A (assuming equally likely) 
and divide the result by the number of figures of each 
codeword 

Hact(A) = (- log 1/100)/4 = 4.605/4 = 1.151 bits/figure

Thus redundancy of A ranges

2.302 1.151( ) 0.5
2.302

R A −
= = bits/figure

Assuming the codewords of C with the statistics like that 
of A for the sake of simpleness, we have Hmax(C)=Hmax(A) 
and Hact(C)=Hact(A) and thus we obtain 

R(C) = R(A)

The theoretical redundancy of C equals to the theoretical 
redundancy of A, but this unique value corresponds badly 
to the physical reality because C shows two forms of 
redundancy in the practice and A has one form of 
redundancy. Hence we should clarify: Does R(C) quantify 
algorithm 1, algorithm 2 or neither? How can we calculate 
every form of redundancy emerging from coding?

Modern authors discuss various forms of redundancy
preferably through qualitative discourses [5] instead the 
present paper puts forward a method of calculus to reply 
the foregoing questions. In particular the paper imports 
the notions of passive redundancy and active redundancy
from the reliability theory. Last it will be shown how the 
results consist with the Shannon theory.

2.  SYSTEMS ANDMODULES
Let the generic component εi executes the function µi
(i=1,..n); we define the system S as the finite set of n pairs 

S = [(ε1, µ1), (ε2, µ2), (ε3, µ3), .... (εn, µn)]         (1) 
 
Τhis expression easily interprets a productive structure, 
such as a machine, an assembly line etc. In fact the 
generic module (εi, µi) is the operational unit that brings 
forth the function µi. The introduction of (1) in the 
information territory is more delicate and requires some 
details.  

Technical writers usually assume that a signal is a 
physical quantity. They share the idea that information 
has a material origin and has not an ethereal nature. As 
second, boundless literature shares the idea that an item of 
information represents something [6][7]. We formalize 
this couple of assumptions in the following manner. We 
establish that an item of information (e.g. a message, a 
codeword, a signal) is the algebraic entity ε which works
as the model of the object η. The following semantic 
diagram formalizes ε that symbolizes η, namely the piece
of information ε brings forth the semantic function µ 

ε                                        η

µ (2) 

Hence we define the pair (ε,µ) when the informational 
item ε  executes the semantic activity µ.

Example A: Take a TTL circuit with low signal 0.5 volt 
and high signal 2.5 volt. This semantic diagram shows 
how the voltage values mean respectively the bits 0 and 1

ε1= 0.5 V η1= 0

ε2= 2.5 V η2= 1

SA = [(ε1, µ1), (ε2, µ2)]

Example B: A congress web page includes four sections 
illustrating ‘program committee’, ‘congress program’, 
‘call for paper’, and ‘tutorial’. The whole communication 
system SB should be formalized in the following terms  

SB = [(ε1, µ1), (ε2, µ2), (ε3, µ3), (ε4, µ 4)]

3.  A DEFINITION OF REDUNDANCY
In general usage, the term ‘redundancy’ signifies more of 
anything than is strictly needed, usually resulting from
repetition or duplication. Both the repetition of 
information and the inclusion of extra information so as to 
reduce errors in understanding messages are considered 
redundant. We translate this property into the following 
analytical determination of the redundancy for S.
We assume one module is necessary to fulfill µj, and ej
modules of S (n ≥ ej >1) accomplish the operation µj; thus 
the surplus modules (ej – 1) provides the redundancy rj of 
the function µj. To generalize the present 
conceptualization, we assume e modules of S perform m
functions µ1,  µ2,...,  µ m  (n ≥ e ≥ m). As redundancy 
means abundance, the summation of the partial 
redundancies yields the redundancy of the whole system.
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Definition 

( 1) ( )
m m

j j
j j

r r e e m= = − = −∑ ∑                   (3) 

 

If summation is zero the system is not redundant; if at 
least one partial redundancy is positive, the system S is 
redundant.
Definition (3) may be applied to different areas as a 
characteristic of generality of the present study [8]. We 
turn our attention to the information territory where 
Definition (3) can calculate a broad variety of 
applications. In fact, whenever two or more pieces of 
information convey the same content, this information is 
redundant. 

Example C: Twenty-five large advertising posters plaster 
the fronts of the houses in a square. They deliver the same 
message the redundancy of this communication system is 
greater than zero

rC = (25 – 1) = 24 messages

Definition (3) can also calculate involute meanings. Take 
for example a codeword that carries on a value which the 
receiver extracts through the calculus. Eqn (3) quantifies 
the redundancy caused by hidden information.  

Example D:  The code C, discussed in the Introduction of 
the present paper, includes the following codeword with
two checksum digits located on the far right 

99 18

The receiver manages the following numbers: ε1=99, 
ε2=18, and the number ε3 = (9+9) = 18. In fact the 
leftmost part of the message conveys the value 18 whose 
significance derives from calculation and is not explicit. 
The codeword has the following structure

SD = [(ε1, µ 1), (ε2, µ 2), (ε3, µ 2)]

Using (3) we obtain 

rD  = (2 – 1) =  1 number

The codeword is redundant due to the pairs (ε2, µ2), 
(ε3, µ2) having the same significance. This calculation 
clarifies how algorithm 2 can detect errors thanks to this 
property.

Eqn. (3) provides the redundancy in a deterministic 
manner, next we shall correlate this approach to the 
Shannon probabilistic method.

4.  RESERVE CODEWORDS
Doubled components make a fabric more robust and 
engineers design a redundant machine to enhance the 
machine reliability [9]. There are two main types of 
redundancy in engineering: active and passive. The active 
redundancy is the most expensive to implement. This 
configuration features two or more active units carrying 
the same job, with only one set connected to the outputs. 
If a fault occurs, there is automatic, loss-less support of 
the remaining units. Passive redundancy is the cheapest to 
implement. One or more backup units are installed in 
addition to one active unit. When a failure occurs, an
automatic switch starts a reserve unit and the system does 
not interrupt. 

We discuss the active and the passive redundancy for 
digital codes. 

I ) - We consider n codewords obtained by means of the 
base B (B ≥ 2) and the fixed length Lact

( )Lactn B= (4) 

 
Now we assume the code S has n words (4). Let e
codewords of S signify one sole object η (n > e >1) and 
the remaining codewords stand for (n – e) objects. The 
semantic diagram exhibits this coding 

  ε1 η

  ε2 η

.......
   εe η

   εe+1 η 1
.......

 εn η n-e 

(5)
We obtain the redundancy of S from (3)

( 1) 0
m

j
j

r r e= = − >∑ (6) 

 
This result gauges the active redundancy of code (5) 
because all the codewords are in use. Examples C and D 
calculate further cases of active redundancy.

II) - Now we assume S has m codewords (n > m) that
signify m objects η1, η2, ...ηm  and the remaining (n – m) 
codewords are ‘unused’. The semantic diagram shows m 
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codewords running while the remnant codewords 
 εm+1 , εm+2 ,...., εn do not compare in the diagram

  ε1 η1

  ε2 η2

   ε3 η3
.......

  εm ηm
(7)

We detail the role of the words εm+1 , εm+2 ,...., εn from a 
practical perspective.
Frequently a word out of the set {εm+1 , εm+2 ,...., εn} is 
transmitted by mistake, hence this word leaves the 
‘unused’ state and becomes active. That word tells 'error' 
(or something like) to the receiver and the semantic 
diagram formalizes this semantic activity 

εk ηk = 'error'

k = m+1, m+2,... n

(8) 
 
A word belonging to the group {εm+1 , εm+2 ,...., εn} turns 
out to be a stand-by word, because a word, transmitted 
and recognized as a ‘wrong’ word, executes a semantic 
function. Modern theorists keep separated the ‘used’
codewords of a coding from the ‘unused’ codewords, as if 
the latter will be definitively kept aside. The ‘used’ and 
‘unused’ codewords lie apart on the theoretical plane, 
instead all of them may be transmitted, stored, 
manipulated etc. in the practice. Everyday experience 
brings evidence how the ‘unused’ codewords are used in 
the reality and convey information. In other terms (n – m)
codewords of code (7) act as reserve words because they 
occasionally get out the stand-by state and exhibit a 
message. This means that encoding (7) embodies the 
passive redundancy in the information field. 
Passive redundancy consist of codewords busy and other
codewords at disposal, we conclude that all the codewords 
are available for the semantic functions, and e equals to n
in (3)

e = n (9) 
 
And the passive redundancy is 

( )
m

j
j

r r n m= = −∑   (10)

The diagrams (7) bring evidence that the set 
{ε1 , ε2 ,...., εm} is not redundant and (10) shows that the 
redundancy of (7) is caused exclusively by the stand-by 

words that are (n – m). Expression (9) has relevant 
significance because it quantifies the passive redundancy 
and specifies how the passive redundancy relies on stand-
by codewords.

5.  TWO FORMS OF REDUNDANCY 
The control of the received words turns out to be 
demanding and the designers of a code frequently want 
the words be easily recognized. They add some controlled 
digits to a word to improve the chances of being able to 
verify and to recover the original message. In substance 
they combine the passive redundancy of the codeword 
with the active redundancy of the whole encoding.  

Example E: We complete the calculation of C undertook 
in Example D, in detail the quantity rD provides the active 
redundancy of a word which enables the control 
algorithm 2

rD  = 1 number = rE1

Moreover 9900 spare codewords allow the control 
accomplished by algorithm 1 due to the following passive 
redundancy

rE2 =  n – m  =  10000 – 100 = 9900 codewords

The quantities rE1 and rE2 show how C has two distinct 
forms of redundancy. 

Anyhow we select one hundred codewords out of the set 
{0000 ÷ 9999} to convey information, the passive 
redundancy does not vary because rE2 relies on the 
amount of surplus codewords. This passive redundancy is 
equal for whichever set of used codewords, hence rE2
provides the redundancy of the code A too.

The passive redundancy of the overall encoding and the 
active redundancy of the single word absolutely differ 
from the practical and the theoretical viewpoints. In 
particular the active redundancy of the single codeword 
does not raise special difficulties; the calculus is rather 
easy. Conversely the passive redundancy of a code 
requires further developments.

6.  FURTHER NOTES ON THE PASSIVE 
REDUNDANCY
Let Lact the actual fixed length of the passive-redundant 
code S and Lm  is the fixed length of the minimal 
encoding. By definition, the minimal code has the length 
just necessary to symbolize m objects η. We make 
explicit (10) by the combinatory analysis
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( ) ( )L Lact mr n m B B= − = − (11) 
 
The base B is not lower than 2, hence (11) entails that S is 
redundant if and only if Lact is larger than the minimal 
length. The code S is redundant whenever Lact surpasses 
Lm

r  ≥  0 w  (Lact – Lm) ≥ 0
B ≥ 2  (12) 

 
This fundamental expression leads authors to appreciate 
the passive-redundancy of S by means of the relative 
increase of length with respect to the minimal length [10]. 
The difference of length is the simplest pragmatic 
assessment of the passive redundancy for digital encoding

D(S) = Lact – Lm               (13) 

Several technical authors introduced a measurement 
symmetrical to D(S) but they have not given the logical 
account of such a measurement so far. Instead the passive 
redundancy and in particular Eqn (12) justify the origin of 
(13).
Eqn (12) shows how the calculation of the minimal length 
is the basic reference for the definition of the passive 
redundancy. Combinatory analysis provides this equation 
useful for crude evaluations of Lm

 Lm =  log B m    (14) 

Example F: We use Eqn (14) to calculate the number of 
bits necessary to encode the decimal values from 00 to 99  

Lm =  log 2 100 = 6.64  bits

Engineers round Lact to seven bits because Lact is not an 
integer, and construct out a passive redundant code which 
ranges

D(S)F = Lact – Lm  = 7.00 – 6.64 = 0.36 bits  > 0

7.  FIRST SHANNON’S CONTRIBUTION
The lower bound of the word length arises as the central 
problem to calculate the passive redundancy. The length 
(14) is valid when we overlook the frequency of the 
signals, although statistical distribution of the modules 
causes significant consequences.
Shannon starts from a system model more accurate than
(1) since he takes the triad (εi, µi, pi) instead of the pair 
(εi, µi). The probabilities pi verifies the following 
constraint

1
n

i
i

p =∑           (15) 

 
Shannon quantifies the average number of symbols 
necessary to represent the set {η1, η2, ...ηm } on the basis 
of the entropy function H, and calls Lo optimal or minimal 
length with assigned statistical distribution the following 
expression

log
m

o i B i
i

L H k p p= = − ∑  k > 0 (16) 

 
When the probability is constant

pi  = 1 / m       i = 1, 2… m      (17) 
 
The function entropy is maximum and equals to (14)

maxmax 1/ log log
m

o B B m
i

L H m m m L= = = =∑     (18)

Notably, the optimal length Lo is not greater than Lm

Lo ≤  Lm (19)

Now we can redefine the distance (13) using Lo and this 
new parameter should be used when we consider the 
statistical distribution of the words

D’(S) = Lact – Lo                             (20) 
 
In short, the present theory calculates the minimal length 
and in turn the passive redundancy at two levels of 
accuracy. We have the lower bound Lm if we ignore 
statistical distribution of signals of S; we obtain the lower 
bound Lo if we calculate the statistical distribution using 
Shannon’s method.  Eqn. (18) proves how the two 
methods are consistent.

8.  SECOND SHANNON’S CONTRIB-
UTION
Shannon calculates the channel capacity, a bound on the 
maximum amount of error-free digital data which can be 
transmitted over a communication link in the presence of 
the noise interference. This author is more interested on 
the flow of codewords rather than on the words one by 
one. 

Shannon establishes that an information source produces 
a sequence of signals to be communicated to the
receiving terminal and this sequence makes a stochastic 
system. Thus he assumes the system S, say ‘source 
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alphabet’, generates the discrete Markov chain ST called 
‘source text’. In brief the pairs of S make a chain by time 
passing.
Normally the source text has repeated patterns of symbols 
because the symbols are not absolutely random. E.g. in 
English the letter ‘q’ must always be followed by a ‘u’. 
This fact leads Shannon to calculate the redundancy of ST
through the actual entropy of S, and the maximum 
entropy (20) that marks the equally likely distribution of 
symbols

max

max

m act act

m

L L H H
R

L H
− −

= =       (21) 

 
This quantity is always less than the unit because of (19) 
and (12).

It is necessary to underline that (21) quantifies the 
redundancy of the data stream ST, instead Definition (3)
applies to any form of redundancy.

In conclusion the present logical framework which starts 
with a deterministic definition of redundancy covers also 
the probabilistic study of redundancy and consists with
Shannon' conceptualization which focuses on a particular 
aspect of redundancy. 

9.  CONCLUSION
Modern information theory calculates a sole form of 
redundancy whereas experience shows a variety of 
redundant forms emerging in the digital technology. As a 
consequence practitioners do not obtain the full degree of 
accuracy and completeness when they assess a redundant 
solution.  
This paper derives Definition (3) from the idea of 
abundance and infers a number of measurements for it. 

In particular we have discussed two kinds of 
redundancies, named active and passive. The paper 
clarifies that both types of redundancies normally coexist 
in a sole code, and relates them to Shannon's information 
theoretic treatment.
The author provides examples to calculate the redundancy 
of a single word, of an encoding and of a sequence of 
transmitted words through the entropy.
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